
Computers can be fun—no
doubt about it, and computer
games and animations can be
especially appealing. While

not all games are good for kids (in this
way, computer games are no different
than books or movies), games are clearly
appealing to kids.

It might be possible to channel this
fascination into something that supports
the learning mission rather than detract-
ing from it. Used properly, games and
animations can be used as an interesting
way to motivate history lessons, demon-
strate ideas, explore the world, and (es-
pecially) reinforce math ideas. The best
way to make games work for good is to
see gaming as a creative endeavor. It’s
fine to play games made by others, but it’s
much more fun to build your own.

Game programming has long been
known as one of the most challenging
forms of computer programming. The
demands of gaming are challenging,
and the need to constantly push the lim-
its of the hardware requires significant
mathematics. Still, there can be ways to
teach game development to kids.

Introducing Scratch
Game development does not have to
be difficult or expensive. The Lifelong
Kindergarten Lab at Massachusetts In-
stitute of Technology developed a re-
markable free tool called Scratch, which
enables even young students to create
remarkable games and animations with
no previous programming knowledge.
Along the way, they learn quite a bit
about math, science, and logic.

In this article, I will introduce you to
Scratch and show you how to use it in
your homeschool. It will be great fun.

However, this is not a tutorial. I’ll show
you exactly how to get started, but then
the rest of the article is designed as a se-
ries of challenges. I’ll give you hints and
examples, but part of the fun is working
together with a friend or parent to dis-
cover how everything works.

The first step is to download and in-
stall Scratch. This program is available
for free for all major operating systems:
scratch.mit.edu. While you’re at the
MIT website, look over all the great re-
sources there. The kids will probably just
start playing, but parents may want to

Building Games and Animations With Scratch Andy Harris

78 May 2012 • Academic Spotlight—Speaking of Computer Science www.TheHomeschoolMagazine.com

By Andy Harris

Building
Games and
Animations
 With Scratch

Figure 1

learn about the many useful help features
available at the MIT site. The best way to
learn Scratch is to just start using it.

Scratch, like most 2D gaming and ani-
mation tools, is based on the notion of
sprites. A sprite is an image with special
properties; it can move, turn, and bump
into other sprites (and often it can do
much more, but those are the basics).

If you look at the right-hand panel
you’ll see a cat in a white box. The white
box is your stage, and the cat is your first
sprite. (The default sprite is called Scratch
the cat, the mascot of the Scratch proj-
ect.) The panel farthest to the left con-
tains a series of buttons. Each of these
buttons indicates something the current
sprite can do. Try this experiment: Be
sure the blue Motion buttons are visible,
and double-click the Move 10 Steps but-
ton repeatedly. Watch what happens to
the cat. He moves!

Now take the Move 10 Steps button
and drag it into the large center area. It
will just sit there. Now take one of the
Turn 15 Degrees buttons, and drag it into
the same center area. If you get close to
a button that’s already in the center area,
you’ll see a white bar, indicating you
can join the two buttons together. Do
that, so that the two buttons are joined.
(It doesn’t matter which order they are
in for now.) You’ve put two commands
together to make something new. If you
double-click this new combination, it

will both move and rotate that cat. Con-
gratulations! You’re now a computer pro-
grammer. It gets a little harder than this,
but not much.

There are a couple more steps to do
before you can call this first animation
“finished.” The blue buttons are all about
changing the motion of the cat, but
there’s much more you can do. The but-
tons in the upper-left corner all let you
access different trays of commands. Click
the yellow Control button to see the com-
mands about controlling the general flow
of behavior. Many of the most important
commands are here. Find the one that
says Forever. It looks to me kind of like
an alligator mouth. (Don’t use Forever If;
that’s a different command.)

Take the Forever block and drag it to
the combination you’ve just made in the
center area. If you get it close enough, the
“mouth” opens up and the Forever block
surrounds the other elements. If you
double click this, the cat will quickly spin
around! Give it a try!

Finally, it’s nice to add a cleaner way
to start and stop your programs. With-
in the same set of Control commands,
you should see a button that says When

<green flag> Clicked. This button looks
kind of like a hat, because it’s meant to
indicate the beginning of a block of code.
Drop it right on top of your other code.
When you’re finished, your code should
look like Figure 2.

Sliding Back and Forth
I’ve walked you through the first proj-

ect, but this is about gaming, so the rest
of the exercises are positioned as gam-
ing challenges. I will provide you with a
sample and some hints, and your job is
to figure out how to make the sample.
It’s best to work with a partner, and you
can look things up online, but really you
just need some imagination and willing-
ness to play around. If you get stuck any-
where, I have solutions to all the exercises
on my website (www.aharrisbooks.net/
scratchTutorial).

Your first challenge is to make Scratch
the cat walk back and forth. Here’s my
sample: aharrisbooks.net/scratchTutorial/
backForth.html.

Note that the first time you try to
open this file, you might be prompted
to install or update Java. This is a tech-
nology often used in web programs.
The form of Java used in this example is
completely safe. Please allow the use of
Java for the example programs in this
tutorial.

The first example involves making the
cat walk back and forth on the screen.
There are a few main ideas to notice:
• Scratch starts moving when you click

the green flag.

www.TheHomeschoolMagazine.com Academic Spotlight—Speaking of Computer Science • May 2012 79

Figure 2

Used properly, games and animations can be
used as an interesting way to motivate history

lessons, demonstrate ideas, explore the world, and
(especially) reinforce math ideas.

Scratch . . . allows us to
introduce extremely
sophisticated ideas
in math, science,
and computer

programming in a way
that’s fun for kids and

adults to learn together.

• He will move forever. (That was a hint.)
• If Scratch ever hits an edge, he should

bounce. (That was another hint.)
• He should only face left or right. (This

one is tricky. Look for a set of tiny but-
tons on the top center panel.)
You’ll see some buttons that control

the cat’s orientation. Don’t be afraid to
experiment!

Shall We Dance?
After you’ve made the cat glide, it’s
time to make him dance. The goal is
something like this: aharrisbooks.net/
scratchTutorial/dance.html.

Note that Scratch seems to be changing
appearance. Sprites have images. Right
now your sprite always looks the same,
but he has two images, and you can add
as many as you want. We call the sprite
images “costumes.” If you look at the
center panel (where you’ve been making
scripts), you’ll see a Costumes tab. Click
on this tab, and you’ll see two costumes.
Click the copy button next to one of the
costumes and then click the Edit button.

Scratch includes a complete paint pro-
gram! You can change your sprite image
or draw your own. You can also load an
image from the library or take a picture of

yourself with a web cam and use that as
the foundation of an image. I’ll stop here
and let you play, because these features
alone can keep you busy for some time.

Once you have a number of images
in a sprite, you can swap between them
pretty easily. Look for the Next Costume
button under the Looks tab. This will dis-
play the next costume in the list and cycle
through the list of costumes indefinitely.

If you swap images in a Forever loop,
the images might change too quickly to
be realistic. (My sprite looks a little fran-
tic at full speed.) Look for a way to slow
things down (there’s a wait command in
controls—just saying . . .). The default
wait time is one second. That might be
too slow. Is there a way you can change
the speed of animations?

Tell a Joke
The next challenge is to use Scratch to tell
a simple joke. As usual, here’s a working
example. Warning: It’s a really bad joke:
aharrisbooks.net/scratchTutorial/joke.
html.

Here’s what this animation does:
• It has two sprites.
• Each sprite starts invisible and off

stage.
• One sprite walks in and calls the other.
• The second sprite comes in.
• They tell a joke.
• The joke deserves a rim shot (and gets

one).
• The sprites walk off stage (. . . and none

too soon).
Planning and preparation are impor-

tant parts of this project. First, find a bet-
ter joke than mine that you want to tell.
Choose or create some characters and a
background. Once you’ve decided on the
characters, the plot, and the scene, you’ll
need to investigate a few new tricks to
make the program work.

You’ve probably used the Move 10
Steps command before, but this com-
mand is not the only way to manage
motion. Two numbers determine the
position of the sprite: X relates to the

80 May 2012 • Academic Spotlight—Speaking of Computer Science www.TheHomeschoolMagazine.com

. . . Part of the fun is
working together with

a friend or parent
to discover how

everything works.

side-to-side position, and Y relates to the
bottom-to-top position. The center of
the screen is (0, 0). You can see how the
screen is organized by selecting the stage.

Go to the Backgrounds tab and im-
port a background. In the main directory
of the backgrounds you’ll see a special
background image called the XY-grid.
This tool shows the XY coordinate sys-
tem and is very handy when you’re trying
to figure out where you are on the screen.
Of course, you can replace it with some
other background when you’re ready to
move on. Figure 3 shows the Scratch edi-
tor with the grid showing.

The Move To button in the Motion panel
moves a sprite to a particular spot imme-
diately. It’s easiest to determine positions
if you start with the grid as a background.
Also, when you first move to the Motion
panel, the Move To and Glide To buttons
are pre-set with the current position.

You can’t make a sprite completely
leave the stage, but you can hide and
show sprites. When the animation starts,
both sprites should be invisible.

Move your first sprite to the center of
the scene and say something (if you want).

The easiest way to synchronize be-
tween two or more sprites is by using the
message mechanism. Any sprite can send
a message. (There’s a Broadcast com-
mand on the Control menu.) Choose
New to create a new message.

Every sprite can also listen for mes-
sages. The Control panel includes a spe-
cial command called When I Receive.
You can use this command to listen for

any messages broadcast by any sprite.
This works much like actors on a stage.
In my example, when the program starts,
the cat and dog are both hidden off stage.
When the cat is finished with his line, he
broadcasts the “CallDog” message. The
dog is patiently listening for “CallDog”
and moves onto the screen when he
hears his message. Messages represent an
extremely powerful mechanism. My joke
program uses a number of other mes-
sages to pass control from one sprite to
the other.

My example also uses a sound effect.
Sounds are attached to sprites and are
modified through the Sounds tab. You
can record your own sound or use one
of the built-in sound effects. The Sounds

panel has buttons for playing back
sounds. Mess around a bit to get the ef-
fect you’re looking for.

Up, Down, Left, and Right
The difference between an animation

and a game is user control (Okay, there are
a few other factors too, such as a goal and
an obstacle, but go with me here.) Your
next job is to make a sprite that moves up
when you press the Up arrow, down when
you press the Down arrow, and (I think
you’re catching on) left and right when the
appropriate arrows are pressed.

Here’s an example: www.aharrisbooks.
net/scratchTutorial/moveKeys.html.

User input involves getting some kind
of signal from the user, normally from
the keyboard or the mouse. This is done
with a combination of two types of but-
tons: (1) if statements and (2) sensors.
When you use the word if in English,
you’re normally testing to see if some-
thing is true. That’s exactly how if state-
ments work in Scratch. On every frame
(several times a second), we need to
check to see if a key is being pressed.
This means you need a Forever loop.
Inside that loop, you’ll need an If com-
mand. (Both are found in the Controls
tab.) Note that If has a little hexagon
shape inside it. This indicates you need a
condition (a true or false test).

Look into the Sensing tab and you’ll see
a great number of tests. The one you’re
looking for is Key <space> Pressed. Now
place a movement command, and when
you press the appropriate key, you’ll
move in the indicated direction. Figure 4
shows this in action.

www.TheHomeschoolMagazine.com Academic Spotlight—Speaking of Computer Science • May 2012 81

Figure 3

Figure 4

Here are a few tips:
• Be careful not to put if statements in-

side each other. While this is legal, it
probably won’t do what you want.

• For this exercise, use the Change X By
and Change Y By commands. These
are very powerful and will allow you to
have complete control of your charac-
ter.

• Have fun and experiment with other
sensors and changes.

• Modify my code so you can make the
sprite also go up and down.

Fly Away!
Game developers have two major types
of motion. Sometimes (as in the last ex-
ample) you directly control the X and Y
position of a sprite. Other times, it’s bet-
ter to think about motion as speed and
direction. Scratch makes it pretty easy to
use this method as well. As an example,
look at the following airplane game:
www.aharrisbooks.net/scratchTuto-
rial/plane.html.

In this game, you control an airplane.
The Up arrow moves you forward, Down
moves you backwards, and the Left and
Right arrows turn the aircraft. (I know
airplanes don’t move backwards, but this
is my game, and I’ll make up my own re-
ality, thank you very much.)

For the most part, this game is much
like the other motion. Just think through
how you will change the movement.

Oh, No! It’s a UFO!
The airplane example is cool, but it’s not
really a game yet, because we don’t have
anything to smack into. What kind of
self-respecting game doesn’t have some
sort of mayhem? Take a look at the next

example to see some fun: www.aharris
books.net/scratchTutorial/ufo.html.

Now we have a UFO (I actually used
the manhole cover built into the Scratch
library, but now it’s a UFO. Because I said
so, that’s why.) The UFO has interesting
behavior. Whenever I hit the UFO with
the plane, the UFO resets (or moves to
a new random spot on the screen). Here
are a few tips for getting this behavior:
• First, build the UFO sprite. Make sure

you’ve named your sprites. That be-
comes important when you start work-
ing with collisions. You can change the
name of a sprite in the text box that ap-
pears near the top of the screen when
the sprite is active.

• Add some code in the UFO sprite to
check for collisions. Remember, you’ll
need to do this every frame, so you’ll
need a Forever loop.

• When the UFO collides with the plane,
change the X and Y position of the
UFO. (You can also play a sound effect
if you want, of course.)

• Look in the Operators panel for a Pick
Random command.

• You may want to review the XY-grid
background to see what your random
range should be.

• You can set the position in one com-
mand or separate X and Y. I think the
separate commands are easier, because
the random stuff will make the code
very long.

• The message mechanism can be a good
way to clean up your behaviors; con-
sider using it.

We’ve Got All the Time
in the World
In every game, there has to be some sort of
goal and some sort of obstacle. The goal of
the airplane game could be running into
the UFOs, but what’s the obstacle? Time
is one of the easiest obstacles to manage.
The next goal is to make a timer. Here’s an
example in Figure 5: www.aharrisbooks.
net/scratchTutorial/timer.html

The timer is pretty easy to use. It’s always
been there, but you might not have seen it
before. Look in the Sensing tab. There’s a
button called Timer with a little check box
next to it. Click the check box, and you’ll
see the current number of seconds since
the timer began. That’s not a helpful thing
by itself, but you also have a Reset Timer
button. Think about how you can be sure
the timer resets at the beginning of a game.
(Remember, the game always starts right
after you click on the green flag.)

Something needs to happen when the
timer is finished. What you’ll need is an-
other condition. If you want the game
to stop after 10 seconds, you’ll need to
compare the timer to the value 10. Look
in the Operators tab and you’ll see the >
(greater than) operator from math class.
See if you can figure out how to make a
condition that triggers when the timer is
greater than 10. You will probably want
the game to be longer in real life, but it’s
much easier to test the game with a short
time span at first. You can make it longer
once you know it’s working right.

There are a number of things you
could do when the timer reaches 10, but

82 May 2012 • Academic Spotlight—Speaking of Computer Science www.TheHomeschoolMagazine.com

Figure 5 Figure 6

It’s fine to play games
made by others, but

it’s much more fun to
build your own.

the easiest is to simply stop all the scripts.
Look in the Controls panel for the appro-
priate button.

Just a Little More . . .
Let’s Add the Score!
Now we’re getting close to creating a
game. However, it would be nice to know
how many UFOs we touched during
the game. That’s pretty easy to do, but
we need some way to count how many
touches have happened. This introduces
a wonderful new concept called a vari-
able. A variable is a special place in mem-
ory that holds some kind of value.

Look at the Variables tab and you’ll see
a simple set of controls, but there’s a lot
more there than meets the eye. Click on
the Make a Variable button, and a little
dialog pops up. We want to call this new
variable Score, and it will be available to
all sprites. When you’re finished creating
the variable, a bunch of new command
buttons appear in the Variables tab.

Use the check box next to the Score
button to determine if the score is dis-
played on the screen.

You can now add code to your program
to reset the score to 0 when the game be-
gins and change the score by 1 (or a thou-
sand—video games practically invented
grade inflation) every time you hit a UFO.
Your final game ought to look like Figure
6. You can play it here: www.aharrisbooks.
net/scratchTutorial/ufoHunter.html.

But Wait . . . There’s More!
You have now learned how to a game.
But I’ve walked you through my game.
It’s time for you to make your own. You

should have all the basic features you
need. Here are a few ways to make it your
own:
• Add your own graphics and sound ef-

fects, and change the theme.
• Give the user’s sprite more realistic

motion.
• Make the target move around on the

screen somehow.
• Add new things to get in the way. Maybe

you lose a life when you hit one, and the
game ends when you run out of lives.

• Build an entirely new game based on
these ideas and your imagination.

Okay, Programmers, I’ll Talk to
You Now
If you’re already a computer program-
mer, you probably can see what’s going
on here. Scratch is a very clever envi-
ronment that helps us teach all the main
ideas of programming. With the exercis-
es outlined in this article, I’ve introduced
the following:
• Sequential programming
• Conditions and loops
• Event-driven programming (through

messages and sensing)
• Simple functions (through-message

passing)
• Object-oriented design (each sprite is

an instance of a sprite class)
• Variables

The examples I’ve shown are still quite
simple, but Scratch actually supports
quite sophisticated programming para-
digms. You might want to experiment
with some of these things:
• Add your own DX and DY variables to

add a basic physics model.

• Add gravity (objects slowly fall down
when released).

• Add a “jet pack” behavior that provides
upward thrust on a key press.

• Use lists to keep track of multiple objects.
• Create an RPG game with characters,

monsters, and interactions.
• Build an orbital physics simulation.

Really, we can do all of these things.
Scratch’s best feature is that it allows us
to introduce extremely sophisticated
ideas in math, science, and computer
programming in a way that’s fun for
kids and adults to learn together. Build
some great games, and let me know
what you’ve learned! Send me your best
games and I’ll post them on my website
for others to enjoy!

Andy Harris is a homeschool dad,
father of four great kids, and husband
to the greatest homeschool teacher ever.
He has taught all ages of students, from
kindergarten to university level. Andy is
the author of a number of well-known
books, including HTML/XHTML/CSS:
All in One for Dummies, Game Pro-
gramming—The L Line, PHP6/
MySQL Programming for the Absolute
Beginner, and Beginning Flash Game
Programming for Dummies. For
more information about his books, to
see where he is speaking next, or to just
say hi, please stop by his website: www
.aharrisbooks.net.

www.TheHomeschoolMagazine.com Academic Spotlight—Speaking of Computer Science • May 2012 83

NOEO SCIENCE

www.noeoscience.com

Teach science...painlessly.

